material 版 (精华区)
发信人: sucky (这念/'suki/,不要念错哦), 信区: material
标 题: 材科讲义(1)
发信站: 听涛站 (2001年06月06日18:17:39 星期三), 站内信件
§1. Introduction to Chapter 2, Interfaces
1. Scope
l Surfaces: solid/vapor (physics)
solid/liquid (solidification)
liquid/vapor (condensation)
l Interfaces*: solid/solid
crystalline materials*: metals* (me), ceramics (ce),
semiconductors (se)…
amorphous materials: polymers, glass (nonmetallic, metallic)
2. Arrangement
Classifications, Structure and models, Interfacial energy,
Equilibrium shape, Equilibrium segregation, Migration
3. Influence to material properties (as planar defects)
l Mechanic: obstacles to deformation
sources of cracks
paths of breaking
(grain refining: the only process that improves both strength and toughness)
l Physical: electric and thermal (se/se, se/me)
superconductivity (g.b. in superconductors)
magnetic (grain size and texture)
l Chemical: corrosion resistance
stress corrosion
catalysis (nanomaterials)
4. Relevant new techniques: grain boundary engineering,
film growth, nanomaterial, composite materials…
§2. Classifications of interfaces
1. According to adjacent crystals (see table)
homophase
heterophase (differ in composition and/or structure)
2. According to degree of lattice matching
l coherent (twin, hcp/fcc)
l semicoherent
small angle grain boundaries
habit planes of precipitates
l fractional coherent (coincidence site lattice (CSL))
special large angle grain boundaries
habit planes of precipitates
l incoherent
3. Parameters for describing interfaces
l Five macroscopic parameters
Three for orientation relationship(位向关系)
homophase
rotation angles around three axes (3), p412
rotation axis (2) + q (1) or (hkl)α1 // (hkl)α2 + q (1)
heterophase
{(hkl)α , (hkl)β, q1} + {[uvw]α, [uwv]β, q2}
Two for orientation of interface:
normal vector (法矢), (hkl)α1 // (hkl)α2
l Three microscopic parameters to define a translation
constant for atoms in coherent interfaces
various for atoms in others (depending on local relaxation)
§3. Structure of interfaces and geometrical models
1. Dislocation structure
(D =dislocation spacing and b, bαi, bβi, bαL = Burgers vectors)
l symmetric tilt grain boundary
D = b/[2sin(q/2)] @ b/q (q = tilt angle)
l interface with 1D misfit
d = (aα - aβ )/aα misfit (失配度)
D = aβ/d = aαaβ/(aα - aβ )
l interface with <3 sets of dislocations, with bαi & bβi in interface
D = 1/|Db*|, Db* = bαi* - bβi*,
bsi* = bsi/|bsi|2, (s = α, β; i = 1,2)
For 1D: 1/D = |1/aα - 1/aβ|
l general interfaces
Relationship between 2 lattices:
xβ = Axα
xα , xβ : vectors in lattice α and β
A: transformation matrix
Misfit displacement:
d = xβ - xα = (I - A-1)xα
Minimum misfit achieved when d = bαL, at xO
(I - A-1)xO = TxO = bαL
xO defines an O-lattice point
Frank-Bilby-Bollmann-Christian Equation
For 1D: A = r =5/6, (1 - 6/5)xO = aα, D = |xO| = 5aα
Any point x at an O-cell wall is defined by (Bollmann 1967)
[(bL)T G T]x - (1/2)[(bL)T G bL] = 0
T = I - A-1
G = metric tensor (度标张量)
In orthogonal coordinates
cO = TTbL*
cO = normal vector of O-cell walls
1/|cO| = spacing of O-cell walls
bL* = bL/|bL|2
Dislocation structure in an interface normal to n (unit vector)
dislocation direction: xi = n ′ ciO dislocation spacing: 1/?xi?
Special interfaces:
Grain boundaries (g.b.): ciO // xiO and |xiO| = 1/|ciO|
When b1L ^ b2L : x1 // x2O (parallelogram, 平行四边形)
When n ^ ciO: Di = 1/|ciO|
for 1D misfit or g.b., 1/|ciO| = |bi|/|T|
for all above cases: D = 1/|Dbi*|
2. Models for other singular and vicinal interfaces
1) CSL/DSC model (for large lattice misfit)
CSL: Coincidence Site Lattice
DSCL: (Displacement) Complete Pattern Shift Lattice
l key parameter S
l secondary dislocations (Burgers vectors from DSCL)
2) Structure unit model (atomic calculation)
--
昔我往矣 杨柳依依 今我来思 雨雪霏霏
行道迟迟 载渴载饥 我心伤悲 莫我知哀
※ 来源:·听涛站 tingtao.dhs.org·[FROM: 匿名天使的家]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:1.896毫秒