Life 版 (精华区)
发信人: meteor (给我一个愿望), 信区: other
标 题: 木 卫 二 存 在 海 洋——日 渐 明 朗 (zz)
发信站: 听涛站 (2002年03月31日00:39:32 星期天), 站内信件
木 卫 二 存 在 海 洋——日 渐 明 朗
David Stevenson 著 Shea 译
当导线放在随时间变化的磁场中时,感应电流就会产生。这些电流会依次产生能被
探测到的磁场,这就是机场的金属探测器以及使“伽利略”木星探测器能“看”到木星
卫星中带电导体的物理学原理。在本期杂志的1340页,克沃尔森(Kivelson)以及其他
人公布了木卫二的表面附近存在导电层的压倒性证据。最可能的解释是木卫二在其冰壳
之下有一个含盐的、全球性的海洋。
木卫二的大小与月球相似而且在成分上被认为是最像地球的,但在其表面有一层厚
100公里左右或是液态或是固态的水。由于木为二环绕木星的奇异轨道引发的潮汐力使表
面非常冷的冰层普遍发生破碎和变形。在冰层表面下10公里处可能存在水,使那些对地
球以外适合生命存在的环境感兴趣的人兴奋不已,同时也确定了木卫二在NASA外太阳系
计划中扮演主要角色。
理论上的、地质学的以及光谱分析的论据都被用来证明木卫二冰壳下海洋的存在,
但是没有一个能让人心悦诚服(见表)。作为比较,磁场的证据却惊人得强有力。为理
解这一点,设想在靠近木卫二表面处存在良导体层会发生的现象。在这种“高导电性”
的情况下(达到这一导电性的磁场弱于对金属的要求),一个简单的感应模型预言由感
应电流产生的随时间变化的磁场几乎可以精确的抵消垂直于木卫二表面随时间变化的外
部磁场。后一磁场主要来自于木星磁轴的倾斜,这使得朝向木卫二的磁场以大约20度的
振幅震荡,其周期为10小时。木卫二感应磁场的强度、磁极的方向取决于木卫二在木星
旋转的磁场中的瞬时位置。
观测的数据和模型匹配得很好。这就是更惊人的设想,而且这个模型没有需要调整
的参数。另外,最近的数据显示当探测器遇到180 度经线时,木卫二由电流产生的磁场
会转向180 度,这正如模型所预计的那样。这一现象和固定的磁场有很大的差别。这一
模型没有对数据进行精确的描绘: 木卫二深深地沉浸在木星的磁层及其包含的等离子体
中,而且可以弄清的(尽管很复杂)磁场扰乱了因木卫二的环境而产生的交互作用。
木卫二存在海洋的证据
技术:
1、潮汐变形及加热效应的理论研究
2、对其表面变形的观测,尤其是“混乱”地区、圆形山脊,可能在低粘性的表面
上流动
3、近红外光谱预示有盐在表面沉淀
4、磁场证据证明存在感应效应
5、利用高度测量和重力测定潮汐的变化
推测:
1、假设海洋一旦形成就会持续存在
2、暗示薄冰和高运动性的冰与其下存在海洋相符
3、盐会在盐水的“喷发”中升华
4、一个接近表面的、全球性的导体层的最好解释是一个含盐的海洋
5、是否存在海洋可以参考冰的厚度
挑战:
1、对冰的流动能力几乎一无所知,尤其是对潮汐的频率,因此预报尚无法确定
2、这也可解释为薄、冷、脆的冰“浮”在厚、暖、软的易变形的冰上
3、就算有水包含其中,它也没必要形成海洋——它可能在融化的冰中
4、还有其他可能的导电层?
5、木卫二的轨道
为了更好地近似,感应现象取决于导电层的厚度和导电性。而且这一导电层也必须
是一个完整的球壳;观测数据无法用比全球覆盖少得多的高导电区域拼凑而成的模型来
解释。一个成分与地球海水相似、厚度超过10公里的全球性水层可以解释这些数据。在
木卫二的海洋中占支配地位的离子可能与地球的不同,但它们必须符合导电的要求。一
个厚得多的水冰层,即使掺杂有大量的盐水冰也无法解释这一现象,因为与在液态水中
比起来其离子相对稳定。任何似是而非的流动海洋(相对冰层)是无关紧要,因为其速
度远低于木卫二表面的转速。一个部分融化的冰层可能符合导电的要求,但其本身难以
令人信服,因为融化的液体在大范围上是互相连接的,这将导致由于冰和水的密度不同
水从冰层中过滤分离出。克沃尔森等人证明木卫二的外部电离层同样无法提供符合要求
得导电层。感应区的强度与其到导电层的距离的平方成反比,任何深层的导电层(例如
金属核或岩浆核)所形成的磁场远比观测到的弱。
一些奇异的可能性也不应被排斥(例如石墨或其他高导电性的物质,或者在冰中混
杂着大量的碳但其在颗粒范围内互相连接),但是一个水层是最似是而非的解释。一个
引人注目的证明海洋存在的证据可能来自被提议的木卫二的人造卫星测得的重力和高度
的数据。预计中的每天潮汐的振幅在木卫二有全球性海洋的情况下将大于没有的情况。
更复杂的是,介于这两者之间的设想可能是可行的(例如冰在有些地方与下面的岩石接
地)。但是人造卫星的数据可能会解开木卫二是否存在海洋之谜。只要定义足够广泛,
海洋可能并不稀罕,但木卫二的情况可能很特殊,因为潮汐的加热可能使液态水接近表
面,包括偶然的喷发或流动。在火星之后,它仍是太阳系中最吸引人的搜寻可能存在生
命证据的地方。
[Science 8月25日]
回到目录
??海外译林——木卫二存在海洋——日渐明朗(英语原文)
PLANETARY SCIENCE:Europa's Ocean--the Case Strengthens
David Stevenson*
When a conductor is placed in a time-varying magnetic field, electrical
currents are induced. These currents in turn create magnetic fields that can
be detected. It is these physical principles that underlie the operation of
metal detectors at airports and that give the magnetometer on the Galileo s
pacecraft the ability to "see" electrical conductors inside the moons of Jup
iter. On page 1340 of this issue, Kivelson et al. present overwhelming evide
nce for a conducting layer near the surface of one of these moons, Europa. T
he most likely explanation is that Europa has a salty, global water ocean be
neath its ice shell.
Europa is similar in size to Earth's moon and is thought to be mostly Ea
rthlike in composition, but with a layer of some 100 km or so of water on to
p, which may be either liquid or solid. The very cold surface ice is extensi
vely cracked and deformed, a testament to the flexing by tides as Europa fol
lows its forced eccentric orbit about Jupiter. The possibility of water bene
ath this ice, perhaps as little as 10 km below the surface, has excited thos
e interested in extraterrestrial environments for life and established a maj
or role for Europa in NASA's plans for outer solar system missions.
Theoretical, geological, and spectroscopic arguments have all been used
to support the presence of an ocean beneath Europa's icy shell, but none of
these arguments are compelling (see the table). In contrast, the magnetic fi
eld evidence is remarkably strong. To appreciate this, consider the behavior
expected for a sufficiently conducting shell close to Europa's surface. In
this "high conductivity" limit (reached for a conductivity many orders of ma
gnitude lower than those for a metal), a simple induction model predicts tha
t the time-dependent field created by the induced currents almost exactly ca
ncels the component of the time-dependent external field perpendicular to Eu
ropa's surface. The largest contribution to the latter comes from Jupiter's
dipole tilt, which causes the field direction at Europa's location to oscill
ate with an amplitude of roughly 20° and a period of about 10 hours. The pr
edicted strength and direction of Europa's induced magnetic dipole depend on
the instantaneous position of Europa in the reference frame defined by Jupi
ter's rotating magnetic field .
The observational data match the model well. This is all the more remark
able considering that the model has no adjustable parameters. Moreover, thes
e most recent data show that the field arising from currents or magnetizatio
n within Europa changes direction by 180° for spacecraft encounters 180° a
part in longitude, as the induction model requires. This behavior is very di
fferent from that expected for a fixed field [such as the core dynamo that a
ppears to dominate at Ganymede]. The model does not represent the data perfe
ctly: Europa is deeply immersed in the jovian magnetosphere and in the plasm
a contained within that field, and understandable (though quite complex) fie
ld disturbances arise from this interaction of Europa with this environment.
EVIDENCE FOR EUROPA'S OCEAN
Technique:
1.Theoretical study of tidal deformation and heating
2.Observations of surface deformation, especially "chaotic" regions,
rafting, cycloidal ridges,possible low-viscosity surface flows
3.Near-infrared spectroscopy suggesting salt deposits on surface
4.Magnetic field evidence for an induction response
5.Altimetry and gravity field with sufficient resolution to determin
e tidal variation
Implications
1.Predicts that an ocean will persist once formed
2.Suggests thin ice and highly mobilized ice, consistent with an und
erlying ocean
3.Salt could arise from sublimation of a salty water "eruption"
4.Requires a near surface,global conducting layer,most readily expla
ined by a salty ocean
5.Clear determination of whether there is an ocean; information on i
ce thickness
Challenge
1.Rheology of ice is poorly known, especially at tidal frequencies,
so predictions are uncertain
2.Might be explained by thin,cold, brittle ice "floating" on thick,w
arm, soft, easily deformed ice
3.Even if water is implicated,it need not come from an ocean--there
may be melting within the ice
4.Is there any other possible conducting layer?
5.Requires Europa orbiter
To a good approximation, the induction response depends on the product o
f conducting layer thickness and conductivity. However, the layer must be a
nearly complete spherical shell; the data cannot be explained by a patchwork
of highly conducting regions with much less than global coverage. A global
layer of water with a composition similar to Earth seawater and a thickness
greater than about 10 km could explain the data. The dominant source of ions
in Europa's ocean may be different from those in Earth's oceans , but they
should satisfy the conductivity requirement. A much thicker layer of water i
ce, even if it is heavily contaminated with frozen brine, cannot explain the
data because the ions are relatively immobile compared with those in liquid
water. Any plausible ocean flow (fluid currents relative to the ice shell)
is unimportant because it will have a much lower velocity than the rotationa
l motion of Europa's surface. A partially melted ice layer could match the r
equired conductivity but is physically implausible because the melt would ha
ve to be interconnected over large distances, which would result in the melt
percolating through and separating from the ice driven by the density diffe
rence of ice and water. Kivelson et al. argue that Europa's tenous, external
ionosphere also cannot provide the required conducting layer. The induced f
ield declines as the inverse cube of the radius from the surface of the cond
ucting layer, and any deep-seated conducting layer (such as a metallic core
or a magma ocean in the rocky core) would therefore lead to a much lower fie
ld than is observed.
Some more exotic possibilities cannot be excluded (such as graphite or s
ome other relatively high conductivity material, plausibly carbon-rich, inte
rmingled within the ice but interconnected at the grain size scale), but a w
ater layer is the most plausible explanation. A compelling demonstration of
its existence or absence may be reached from gravity and altimetry data in t
he proposed Europa orbiter. The predicted diurnal tidal amplitude is over an
order of magnitude larger for a Europa with a global ocean than for a Europ
a without one. More complex, intermediate scenarios can be envisaged (such a
s ice "grounding" on the underlying rocky topography in some places and not
others). But the orbiter results will likely settle the fascinating question
of whether Europa has an ocean. Defined broadly enough, oceans may not be t
hat rare, but Europa's case may be special because the tidal heating may all
ow liquid water to get closer to the surface, possibly including occasional
eruptions or flows. After Mars, it remains the most attractive extraterrestr
ial environment within our solar system in which to seek evidence of past or
present life.
*The author is in the Division of Geology and Planetary Science, Califor
nia Institute of Technology
Science Volume 289, Number 5483, Issue of 25 Aug 2000, pp. 1305-1307.
--
如果一生只能看见一颗流星
和你在一起是我唯一的愿望
※ 来源:·听涛站 tingtao.dhs.org·[FROM: 匿名天使的家]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:1.727毫秒